
Eur. Phys. J. D 6, 211–220 (1999) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. A simple model is developed to determine a scattering length from the experimental values
of the energy of the last, least bound, vibrational levels of the ground state, either 1Σ+

g or 3Σ+
u , of an

alkali dimer. It is based on an extrapolation of the positions of the few outermost nodes of the bound
vibrational wave functions towards the dissociation threshold. It uses the asymptotic part of the molecular
potential only. The method is applied to recently measured levels at the asymptote (3s + 3s) of Na2.
We obtain precise values for the two scattering lengths respectively associated to the dissociation limits
F1 = F2 = 1, F = 2 (55.1±1.6 a0) and F1 = F2 = 1, F = 0 (50.0±1.6 a0); the first value corresponds to the
a1,−1 scattering length usually considered in cold collisions. The extrapolation procedure is also applied to
Li2, using existing experimental data.

PACS. 33.20.Kf Visible spectra – 32.80.Pj Optical cooling of atoms; trapping – 34.50.Pi State-to-state
scattering analyses

1 Introduction

A quantitative description of Bose-condensed alkali va-
pors, recently observed for Rb [1], Na [2] and Li [3], re-
quires the knowledge of accurate low-energy atom-atom
collision data such as scattering lengths. The stability of
a condensate is indeed controlled by the sign of the scatter-
ing length [4–6]. A priori calculation of these parameters
is known to be a very difficult task, because they depend
very strongly upon the interaction potentials [7,8], which
cannot be computed with sufficient accuracy at short or
intermediate internuclear distances. Therefore, the use of
experimental results appears to be necessary.

There are different approaches to determine accurate
scattering lengths from experimental data. One is based
on the observation of minima in the intensities of pho-
toassociation spectral lines, which can be related to the
position of the nodes of the wave function describing the
collision of two ultracold atoms. The data are extrapolated
from small to zero collision energy. This has been applied
to Rb [9,10], Li [11], Na [12] and Cs [13].

A second approach uses spectroscopic data of bound
vibrational levels of the ground state (singlet or triplet)
of the diatomic molecule to extract potentials as accurate
as possible, to compute the phases of the last levels and
to extrapolate them towards the dissociation limit. To be
accurate, this extrapolation requires that the energy dif-
ference between the highest measured levels and the dis-
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sociation limit is as small as possible. Abraham et al. [14]
and Tsai et al. [15] recently measured the last, least bound
levels of Li2 and Rb2 respectively, by two-color photoas-
sociation spectroscopy, and have obtained very accurate
values for the scattering lengths. For Na2 and K2 there
also exist spectroscopic data, but ending at a few wave
numbers below the dissociation limits, leading to larger
uncertainties in the extrapolation [16,17]. In some cases,
the observation of shape resonances connected to the cen-
trifugal barrier has allowed to improve the determination
of scattering lengths [10,18]. Very recently, the observa-
tion of Feshbach resonances induced by a magnetic field
has also provided scattering length values, either directly,
through photoassociation spectroscopy [19], or indirectly,
by measuring the number of atoms in a Bose-Einstein con-
densate [20].

We present here results of a new spectroscopic exper-
iment to measure the energies of the last bound levels in
the ground X1Σ+

g potential curve of Na2. We then describe
the method which we developed to extract the scattering
length starting from such spectroscopic information. Our
approach is related to the accumulated phase method [9,
21], and, more generally, to quantum defect theories [22,
23] and to Milne’s method [24,25]: we use indeed the
fact that the inner part of the wave function changes
its shape very little for energies close to the dissociation
threshold. The method involves only the generally rather
well known asymptotic part of the adiabatic molecular
potential (atomic hyperfine structure, dispersion and, if
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Fig. 1. Simplified experimental scheme to measure the last
bound levels of X1Σ+

g .

necessary, exchange interaction). Its originality is to ex-
trapolate towards the dissociation limit in a very intuitive
way, based on the position of the outermost nodes in the
vibrational wave functions, which provide an easy way to
visualize the phase of the radial oscillation.

After a short description of the experiment (Sect. 2),
we investigate the link between scattering length and node
positions of the zero-energy s-wave scattering wave func-
tion (Sect. 3). In the next two sections, we describe the
extrapolation procedure that we use to obtain, from the
accurate spectroscopic data of Section 2, the positions of
the outermost nodes of this zero-energy scattering wave
function, which will in turn, using the results of Section 3,
allow us to obtain the scattering length. In Section 4, we
consider the simple case of a pure R−6 potential, which
is also general since in such a model the different alka-
lis differ by a scaling factor only. In Section 5, a more
precise Na2 asymptotic potential is introduced in single
channel calculations; the influence of channel coupling in
the asymptotic region is then studied, to investigate the
limitations of the single channel procedure.

2 Spectroscopy of the last bound levels of
the X1Σ+

g ground state of Na2

For measurements of the last bound levels of X1Σ+
g we

extended the setup which we applied for the observation
of asymptotic levels in the state A1Σ+

u of Na2 [26]. The
principal scheme is described shortly here, details will be
published elsewhere [27]. We start with a collimated beam
of molecules, where mainly the few lowest vibrational lev-
els (vX=0, 1, 2) of X1Σ+

g are populated. These levels can-
not be connected to the last bound levels (vX > 60) with
a single Raman-type transition, neither using levels of the
A1Σ+

u state nor of the B1Πu state as intermediates, due
to negligible Franck-Condon overlap. Therefore, we use
two steps as shown in Figure 1: first we populate interme-
diate levels of X1Σ+

g (e.g., vX = 29) by Franck-Condon
pumping realized by laser L1. Starting from these levels,
there is reasonable Franck-Condon overlap for the Raman

Fig. 2. Example for spectrum of asymptotic levels of X1Σ+
g .

→
F =

→
F 1 +

→
F 2 denotes the total angular momentum of the two

atoms. The zero of the frequency scale is arbitrary.

transition (vX = 29) − (v′A = 100-140) − (v′′X = 61-65).
For detection we observe the fluorescence when scanning
laser L3, while laser L2 is kept on resonance with the tran-
sition (vX − v′A). The fluorescence decreases, when laser
L3 gets in resonance with the transition (v′A − v

′′
X), com-

pleting the Raman cycle. A recording is shown in Fig-
ure 2, where we observe the resonances (v′A = 120, J ′ =
1) − (v′′X = 64, J ′′=0, 2), while laser L2 is on resonance
with the transition (vX = 29, J = 0)− (v′A = 120, J ′ = 1).
In this example each rotational line is split into a dou-
blet due to hyperfine splitting of v′′X = 64. For the levels
v′′X = 61 to 63 the hyperfine structure is smaller and was
not resolved in our experiment.

With this scheme we observed the last bound levels of
X1Σ+

g 62 ≤ v′′X ≤ 65, J ′′ = 0, which are used throughout
this paper. The value for v′′X = 61 was derived from ob-
served transitions with J ′′ 6= 0. Additionally, we obtained
data for J ′′ = 1, 2, 3 and for some levels of the triplet
ground state a3Σ+

u (the levels v′′X ≤ 62, have been ob-
served earlier by Fourier-transform spectroscopy for J ′′ =
13, 15 [28]). The observed linewidths for J ′′ = 0 are
about 20 MHz, which allows an excellent experimental
accuracy. For absolute calibration of the frequencies of
the lasers L2, L3 we used the iodine absorption spec-
trum (for v′′X ≤ 63), saturation spectroscopy on some cali-
brated iodine lines [29] (for v′′X = 64, 65) or a lambda me-
ter (for L2), leading to estimated uncertainties of about
10 MHz for each calibration step for v′′X = 64, 65. In or-
der to give the level energies with respect to the dis-
sociation limit, we used the photoassociation measure-
ment of the energy difference between (3s2S1/2(F1=1) +

3s2S1/2(F2=1)) and (A1Σ+
u , v′ = 165, J ′ = 1), which is

equal to 16954.8828(10)cm−1 [30]. The results are given in
Table 1, together with experimental uncertainties, assum-
ing the different calibration steps to be independent. For
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Table 1. Energies of the last levels of X1Σ+
g with J ′′ = ` = 0.

The zero of energy is set at the dissociation limit 3s2S1/2(F1 =
1) + 3s2S1/2(F2 = 1).

v′′X energy Ev [cm−1]

61 −8.9710(25)
62 −4.2932(25)
63 −1.6238(25)
64 (F = 0) −0.3744(9)
64 (F = 2) −0.3696(9)
65 (F = 0) −0.0131(7)
65 (F = 2) −0.0106(7)

v′′X = 64, 65 the uncertainty is dominated by the photo-
association step. The v′′X = 65 level is definitely the last
vibrational level below the F1 = 1, F2 = 1 asymptote.

As the considered levels are very loosely bound, the
wave function is mainly located in the asymptotic region,

where the angular momentum
→
` associated to the nuclear

motion can be considered as decoupled from the total an-

gular momentum
→
F =

→
F 1 +

→
F 2 of the two atoms. In the

theoretical interpretation, we shall always use the symbol
` instead of the spectroscopic convention J ′′.

3 Nodes of threshold radial wave functions
and scattering length

The radial Schrödinger equation for the relative radial mo-
tion of the atoms can be integrated either inwards or out-
wards: only the boundary conditions differ. Starting from
the inner region, the same boundary condition holds for
bound and free states: the wave function exponentially
vanishes when the interatomic distance becomes shorter
than the position of the repulsive potential wall at the con-
sidered energy. However, when the integration starts from
the outer region, an exponential boundary condition still
holds for bound states only. For free states corresponding
to relative motion with energy E and angular momentum
`, the asymptotic behavior in the outwards region is con-
trolled by the phase shift δ`(E). For near threshold wave
function with small positive energy E and ` = 0 angular
momentum (s-wave), and in the case of a single potential
V (R)1, the phase shift is simply related to the scattering
length L, defined by

L = lim
K→0

[
−

1

K
tan(δ0(K))

]
, (1)

where

E =
~

2K2

2µ
, (2)

and µ is the reduced mass. The behavior at large inter-
atomic distance R is thus completely determined by the

1 Provided it decays asymptotically faster than R−3, see [31].

scattering length L. Starting from infinite R, one has to
solve the equation(

~
2

2µ

d2

dR2
− V (R) +E

)
f(R) = 0 , (3)

where f(R) is proportional to sin(K(R−L)) for R→∞.
Using this boundary condition, the wave function at any
distance can be readily obtained by inward integration.
As we are interested neither in the inner part of the wave
function, nor in its normalization, we can stop the inte-
gration before the actual potential V (R) diverges from its
asymptotic form, having nevertheless already obtained the
positions of the outermost nodes. For the sake of simplic-
ity, we at first restrict the potential to a −C6/R

6 term,
which is the leading long-range interaction term for the
ground state of alkali dimers: equation (3) reduces then
to a quite general form:(

d2

dx2
+

1

x6
+ k2

)
y(x) = 0 , (4)

where lengths are divided by the scaling factor

α =

(
2µC6

~2

)1/4

, (5)

which depends upon the reduced mass µ and the asymp-
totic coefficient C6, and where wave numbers are multi-
plied by the same factor:

k = Kα . (6)

For the threshold wave function (k = 0), the boundary
conditions can be set:

y(x) = −1 + x/l ,

y′(x) = 1/l , (7)

where we have introduced a reduced scattering length,
l = L/α. (Note the difference between l, the normalized
scattering length, and `, the quantum number of the angu-
lar momentum.) Equation (4) is easily solved numerically
by inward integration (we used “Mathematica” software,
which employs a Runge-Kutta procedure), providing in a
straightforward manner the positions of the last nodes xn
of the threshold wave function which corresponds to any
arbitrary value of the scattering length.

It is also possible, for k = 0, to solve equation (4)
analytically (see [31,7]) and to get an analytical relation
between the position xn of the n-th node of f(x) (for any
n value) and the reduced scattering length l; this is in
fact possible for any x−p potential, with p > 3 and one
has generally:

l =

Γ

(
p− 3

p− 2

)
(p−2)2/(p−2)Γ

(
p−1

p−2

) J− 1
p−2

(
2

(p−2)x
(p−2)/2
n

)

J 1
p−2

(
2

(p−2)x
(p−2)/2
n

) , (8)
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Fig. 3. Position (in reduced units) of the few outermost nodes
of the E = 0, ` = 0 (s-wave) scattering wave function versus
reduced scattering length. The horizontal asymptotes (dashed-
dotted lines) correspond to the node positions for (either posi-
tive or negative) infinite scattering length. The two thin verti-
cal lines are drawn as examples of node positions of the wave
function for two particular values, l = −2.75 and l = 0.58.

Fig. 4. Same as Figure 3, but in polar coordinates (r, θ). The
radius r is node position, in reduced units, and the angle θ is
related to the reduced scattering length by l = tan(θ). The two
broken lines show the node positions for the same two examples
as in Figure 3, l = −2.75 (θ = −70◦) and l = 0.58 (θ = 30◦).

where Jm is a Bessel function with fractional orderm [32].
Whatever the integration method, either numerical or

analytical, it appears that there is a simple one-to-one cor-
respondence (with analytical form given by equation (8))
between the scattering length and any node position of
the threshold s-wave wave function. In other words, any
xn value is associated to a single l value. This is clearly
manifested in Figure 3, where the positions of the first six
nodes (counted from infinite x or R) of the threshold ra-
dial s-wave wave function, obtained by numerical inward
integration, are displayed as a function of l. We have also
drawn two vertical lines to show examples of sets of node
positions for two values of the scattering length, one pos-
itive, the other negative. It is striking that the position of
the outermost node, labelled n = 1, is the most sensitive
to the l value, especially in the l > 0 region. One also no-
tices that the limit of node positions for infinite positive l
and infinite negative l is the same. This property becomes

more obvious in Figure 4, where we have drawn a polar
plot of the node positions versus the angle θ defined by

l = tan(θ) . (9)

The determination of θ is chosen to ensure the continu-
ity of the graph: quadrants I and III (respectively, II and
IV) correspond to positive (respectively, negative) l values.
When θ is increased around π/2, l changes from positive to
negative values through infinity and the outermost node
of quadrant I goes to infinity and disappears, whereas, as
is well known, the last bound level disappears at the well
top. Lines of nodes corresponding to the same l values as
in Figure 3 are drawn for comparison. These results can be
used to determine a scattering length from the position of
a node of the s-wave function which can be deduced from
the analysis of the intensities of vibrational progressions
in photoassociation spectra (see, for instance, [9,13]). It
will be shown below that it also allows us to determine a
scattering length by using the positions of the least bound
levels of the ground state (either X1Σ+

g or a3Σ+
u ).

The results shown in Figures 3 and 4, which correspond
to a pure R−6 behavior of the potential, can be readily ex-
tended to potential curves with any asymptotic behavior
(provided it decays faster than R−3): the numerical pro-
cedure provides similar graphs but an analytic solution is
available for pure R−p potentials only.

4 Extrapolation of node positions of bound
radial wave functions: pure R−6 potential

4.1 Last nodes of radial wave functions of bound
states

Let us consider the last few outermost nodes of some
weakly bound wave functions of a deep potential well. For
any state, the phase accumulated from the innermost node
up to the i-th node is equal to (i− 1)π. Provided that the
energy difference between the considered levels is small
compared to the potential well depth, the phase accumula-
tion will proceed, as R increases, almost identically for the
different levels. The positions of the i-th nodes will thus
be about the same for all considered levels. More precisely,
the line connecting these positions as a function of level
energy (which will be called here i-nodal line) is expected
to decrease very slowly with increasing energy. The same
argument holds for continuum states with small collision
energy values. Finally, if we consider levels with binding
energies small compared to the potential well depth, the
positions of the i-th nodes can be safely extrapolated up
to the E = 0 threshold and little beyond.

The asymptotic part of the least bound wave functions
can be calculated by using the asymptotic potential only,
provided the integration is started from infinite R. Such
an integration can be performed for any energy, E, by
solving the equation(

d2

dx2
+

1

x6
− k2

)
y(x) = 0 , (10)
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Fig. 5. Asymptotic part of the wave functions of the last five
bound vibrational levels of Na2 ground state (with F1 = F2 =
1, F = 2). The wave functions are not normalized; they are
adjusted so that the inner part is about the same for all wave
functions. The thin dashed lines join successive nodes with
same i-number, for i = 61 to 65. The thick dashed-dotted
line is the zero-energy scattering wave function with adjusted
scattering length as obtained in Section 4.3.

with

E = −
~

2k2

2µα2
, (11)

and by using an exponential boundary condition.
We display in Figure 5 the result of such calculations

for the five upper levels v = 61 to v = 65 of Na2, using the
experimental energies of Table 1 (we have chosen F = 2
for the two upper levels). The vibrational wave functions
are drawn as a function of the internuclear distance R.
From the vibrational labelling of the levels it is easy to
identify the numbering of the nodes: according to the usual
convention in which the nodes are numbered from small to
largeR values (i-numbering), the last node of a vibrational
wave function v has a number i = v, the last but one
i = v − 1, etc. We have drawn in the figure the broken
lines joining the positions of the nodes with same number
i (the i-nodal lines), with i varying from 61 to 64. It is
clear that, as expected, these lines are almost straight and
vertical. The considered energy range (about 9 cm−1 from
v = 61 to v = 65) is indeed very small compared to the
well depth of the potential (about 6022 cm−1).

The thick solid lines of the region E < 0 of Figure 6
display the positions of the last few nodes of the wave
functions obtained by inward integration of equation (10),
as a function of E (the figure is not drawn in reduced
coordinates, but in normal coordinates, in the Na2 case,
for C6 = 1539 a.u. [33], µ = 20953.891 a.u. and thus

Fig. 6. Illustration of the extrapolation procedure. The x-axis
represents energies with respect to the dissociation threshold
(in cm−1), the y-axis represents interatomic distances (in a0)
corresponding to nodes of radial wave functions. The calcula-
tion uses the adiabatic potential of Na2 leading to the dissocia-
tion limit F1 = F2 = 1, F = 2 and the experimental energies of
Table 1; the general shape is quite similar for any asymptotic
potential with a R−6 leading term. We have drawn as thick
solid lines: the first five n-nodal lines (see text) corresponding
to bound states, their continuation for “virtual states” and the
first additional nodal line of these states. Also drawn are the
vertical lines at the experimental energy of vibrational levels
v = 63 to 65 (thin solid lines) and at the predicted energies
of the first two virtual states, E1

c and E2
c (thin dashed lines).

Finally, the thick dot-dashed lines represent i-nodal lines (see
text) whose number is indicated on the right. Node positions
of the zero-energy s-wave scattering wave function are located
at the intersection of the latter curves with the E = 0 axis.

α = 89.61 a0). Of course, as actual bound state wave
functions are solutions of an eigenvalue problem, the com-
puted wave functions have a physical meaning only if the
chosen E value corresponds to an eigenvalue of the com-
plete equation: this can be fulfilled, as done in Figure 5, by
using the experimental results of Table 1 and by perform-
ing the integration choosing E = Ev, Ev being the energy
with respect to the dissociation threshold of a level with
vibrational quantum number v.

Nodes of vibrational bound states v can also be num-
bered from large to small distances (n-numbering). The
relation between the two numbers of a given node is sim-
ply

i+ n = v + 1 . (12)

The solid lines of Figure 6 correspond to n-numbering:
we call them n-nodal lines to distinguish them from the
i-nodal lines, which one would obtain by outward integra-
tion at any E value. The i-nodal lines can also be obtained
by joining intersections of the n-nodal lines with verticals
at the experimental energy values: in Figure 6 examples
of i-nodal lines with i = 63, 64 and 65 are given. One sees
that these lines are very smooth so that they can be safely
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Fig. 7. Zoom of the E = 0 region of the preceding graph.
The experimental uncertainty on the measured energy of the
v = 65 vibrational level is indicated.

extrapolated to E = 0, giving the node positions of the
threshold wave functions. From the results of Section 3,
each i-nodal line will then yield one independent determi-
nation of the scattering length; the complete set will be
used for internal consistency check.

4.2 Last nodes of radial wave functions of virtual
states

In the continuum region, the states with phase shift equal
to π/2, sometimes called virtual states, form a natural
continuation of the bound state series: the wave functions
of the first virtual states are expected to resemble much
the ones of the last bound states, at least in the inner re-
gion. The node positions of these wave functions for any
positive energy value can also be obtained by inward in-
tegration of equation (4) with boundary condition:

y(x) = sin (kx− π/2)/
√
k . (13)

The positions of some nodes of such continuum states (re-
stricted to small E values and to the R range of the pre-
viously calculated n-nodal lines of bound states) are dis-
played as a function of E in Figure 6 (solid lines of the
E > 0 region). Due to their oscillatory behavior, contin-
uum states have an infinite number of nodes, which can be
numbered from inwards but not from outwards. However,
as can be seen in Figure 6, any n-nodal line corresponding
to bound states is continued across E = 0 (but with dis-
continuous derivative2) by a nodal line of virtual states,

2 This discontinuity, obtained here for a potential that be-
haves asymptotically as R−6, is specific to s-waves and does
not appear for other ` values. The top of each cusp corre-
sponds to a node position in case of infinite scattering length.
Near threshold, an i-nodal line corresponding to large positive

which is thus called n∗-nodal line by continuation. Vir-
tual states form additional n∗-nodal lines (one such line
appears in Figure 6), which can be numbered n∗ = 0,
n∗ = −1 etc. by simple continuation of the naming. Vir-
tual states themselves can be labeled as v∗ = 66, 67 etc.
and equation (12) can finally be generalized to virtual
states as v∗ = n∗ + i. The nodes of virtual states with
given i-number form a natural extension of the i-nodal
lines of the bound states. It will be shown hereafter that
this extension is helpful in the extrapolation procedure,
for increasing the internal consistency of the method.

4.3 Extrapolation procedure

Now the extrapolation procedure is almost evident. First,
choose a series of experimental energy values Ev (in our
case, v is running from 61 to 65) with ` = 0 which corre-
late to a given dissociation limit, i.e. with a fixed set of
atomic quantum numbers (in our case F = 0 or F = 2 for
3s2S1/2, F1 = 1 and 3s2S1/2, F2 = 1). Then, calculate the
first few n-nodal lines for bound states and their analogs
for virtual states; five lines (n = 1 to 5) corresponding to
bound states and six lines (n∗ = 1 to 5 and n∗ = 0) cor-
responding to virtual states are represented by solid lines
in Figure 6. Draw the vertical lines corresponding to all
experimental Ev values (from v = 61 to v = 65, in our
case): their intersection with the solid lines give the posi-
tions of the last nodes of the bound wave functions. Find
then, from equation (12), their i-number. Use lowest or-
der polynomial interpolation procedure (we have checked
that the chosen interpolation method does not really mat-
ter; the experimental error on the measured energies will
fully determine the uncertainty of the derived E = 0 node
positions and thus of the scattering length) to connect
the nodes with same i-number (dot-dashed lines of Fig-
ure 6). The i-nodal line with smallest i value (61 in our
case) is almost a straight horizontal line and extrapolation
can safely be used along this line to find the position E1

c

of the first continuum state with π/2 phase shift. Draw
now the vertical line (thin dashed) at E1

c to obtain the
predicted positions of the nodes of the corresponding con-
tinuum wave function. Use again an interpolation proce-
dure to connect all nodes with same i-number, belonging
to either continuum or bound states (dot-dashed lines in
Figure 7, which is an enlarged portion of the most inter-
esting region of Figure 6). An additional i-line, involving
the last node, i = 65, of the last bound state, v = 65, now
appears. The extension to the continuum states introduces
an additional constraint for the i-nodal lines, whose cross-
ings with n-nodal lines must align vertically, not only in

(respectively, negative) scattering length is close to a horizon-
tal just below (respectively, above) a cusp point. Therefore
one expects both a real and a virtual near-threshold state in
the case of large positive scattering length, and neither a real
nor a virtual near-threshold state in the case of large nega-
tive scattering length. This is very different from the usual
case of finite-range potential, where a real (respectively, vir-
tual) near-threshold state is predicted in case of large positive
(respectively, negative) scattering length.
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Table 2. Various determinations of the C6 coefficient for Na-
Na interaction with reference given in the first column. The
last but one used a recently measured value of the sodium
atom polarizability [38].

Ref. C6 (a.u.)

[34] 1540
[35] 1527
[36] 1472
[37] 1500
[33] 1539
[33] 1561

the E < 0 region (bound states) but also in the E > 0
region (virtual states). From the values of the interpola-
tion functions at threshold we obtain the positions of the
nodes of the ` = 0 (s-wave) zero-energy scattering wave
function3. Either from the results of Figures 3 and 4 or
from equation (8), we finally find the scattering length
values corresponding to these node positions.

4.4 Results

Using this procedure with the two sets of experimental
energy levels for F = 0 and F = 2 of Table 1, we have
determined the corresponding scattering lengths, that we
note, respectively, L0

S and L2
S. The five i-nodal lines yield

the same value (with relative differences of the order of
0.01%), which clearly demonstrates the internal consis-
tency of the extrapolation procedure. The final results de-
pend on the scaling factor α defined by equation (5) (in
Fig. 6, y-axis is proportional to α and x-axis to α−2),
i.e. on µ and C6. Several recent determinations of the C6

coefficient exist (see Tab. 2 and Refs. [34–37,33]). Among
the various determinations, we have chosen the value 1539
a.u., recently computed by a model potential taking into
account a new measured value of the atomic polarisabil-
ity [38], which remains coherent with the C8 and C10 val-
ues that we use [36]. The scattering length values that we
obtained for two different values ofC6 are shown in Table 3
(in brackets). The uncertainty coming from the measure-
ment of the energy of the vibrational levels is estimated
to be 1.6 a0. It is essentially determined by the error of
the binding energy of the last level (v = 65) also shown
as error bar in Figure 7. The energy difference between
the v = 64 and v = 65 levels is indeed known with a bet-
ter accuracy (0.0005 cm−1) than the two binding energies,
separately.

The values L0
S and L2

S corresponding to the two disso-
ciation channels, F = 0 and F = 2, differ by 5 a0 (about
10 % ), which is larger than the experimental uncertainty.
In addition, the accuracy of the difference between L0

S and
L2

S is certainly still better than the one of the separated

3 As n-nodal lines concern either bound or virtual states only,
the nodes of the E = 0 wave function do not belong to any n-
nodal line; their n-number is one unit larger than the n-number
of the preceding node on the same i-nodal line.

Table 3. Computed values (in Bohr radius, a0) of the scatter-
ing lengths with F = 0 and F = 2, using two different values
of the C6 coefficient, with references given in first column. The
values in brackets correspond to a pure R−6 potential. The
estimated uncertainty is 1.6a0.

Ref. C6 (a.u.) F1 = F2 = 1, F = 0 F1 = F2 = 1, F = 2

[36] 1472 49.95 (49.58) 54.99 (54.68)
[33] 1539 49.98 (49.64) 55.10 (54.80)

values, since the energy differences between the pairs of
levels F = 0 and F = 2 for v = 64 and v = 65 have been
directly measured with a great accuracy (0.0003 cm−1).

The influence of the C6 value in this determination
appears to be very small, and is not readily given by the
scaling factor α (Eq.( 5)). A variation of C6 by about 4%
results in a variation of the scattering length of the order
of 0.1% only, while α is varying by 1%. As we shall see in
the next section, these conclusions still hold when using a
more refined asymptotic potential.

As can be seen from the preceding results, the method
has a good internal consistency. Its two basic assumptions
are that the scattering is due to a unique potential and
that the multipole expansion can be limited to a leading
term, e.g., R−6. In the next section, we will try to estimate
the role of other terms of the asymptotic potential and the
influence of the channel coupling.

5 Influence of the shape of the asymptotic
potential and channel coupling

5.1 Adiabatic potentials

We now consider more precise adiabatic asymptotic po-
tential curves, by using the following procedure. We have
calculated the matrix elements of the R−6, R−8, R−10

terms of the multipole expansion [36], of the hyperfine in-
teraction and of the exchange energy (following the model
of Ref. [39]) in a state basis written as∣∣γ 3s 2S1/2I F1 3s 2S1/2 I F2 FM

〉
s,a

, (14)

where I = 3/2 is the nuclear spin of a sodium atom and
which is an either symmetrized or antisymmetrized two-
atom wave function in which the total angular momenta
F1 and F2 of each atom with electronic quantum num-
bers 3S1/2 are coupled into the total angular momentum
F (excluding the rotation). All the matrices are easily ob-
tained: the dispersion terms are proportional to the unity
matrix, the hyperfine interaction is diagonal, with hyper-
fine splitting equal to 1771.6 MHz [40], and the calculation
of the exchange energy only requires a simple recoupling
(implying a 9j-symbol) of angular momenta. The asymp-
totic adiabatic potentials obtained by diagonalization of
the sum of these matrices are shown in Figure 8, choosing
C6 = 1539a.u. [33] and the data of reference [36] for C8

and C10. The figure is split into three parts, to show first
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Fig. 8. (a) Asymptotic part of the adiabatic potential curves
for the subspace of a3Σ+

u and X1Σ+
g states. (b) Same poten-

tials as in (a), but the energy of the highest triplet curve was
subtracted from all curves, to show the differences between
the potentials with different F with either symmetric and an-
tisymmetric electronic wave function. (c) Same as in (b), but
the energy of the lowest symmetric potential with F = 0 was
subtracted from all curves. The asymptotic quantum numbers
are F1 and F2.

the general shape of the potentials (a), then the labels
of all different adiabatic curves (b) and finally the energy
difference between the two curves we are interested in (c).

We have calculated the two scattering lengths L0
S and

L2
S accessible from the experimental data by the extrap-

olation procedure of Section 4, using now the two adia-
batic curves corresponding, respectively, to F1 = F2 =
1, F = 0 and F = 2 instead of the pure R−6 potential.
The results are shown in Table 3; they are essentially
equal to those obtained by using a pure R−6 potential
(Sect. 4). The uncertainty coming from the experiment
is estimated to 1.6 a0 and the whole discussion of Sec-
tion 4.4 is still valid. The value L2

S found for the dissocia-
tion channel F1 = F2 = 1, F = 2, which is usually known
as a1,−1, is in good agreement with a previous determi-
nation a1,−1 = 52 ± 5 a0 [12]. The latter was obtained
by the NIST group from coupled channel calculations and
fitting the observed intensity pattern in the photoasso-
ciation spectrum recorded for a cold Na ensemble. The
value L0

S that we found for the other dissociation channel,
F1 = F2 = 1, F = 0, is notably different from L2

S, by
about 10%, although both dissociation channels are con-
nected to X1Σ+

g states and although the two adiabatic
curves are very close to each other (see Fig. 8, part (c)).

5.2 Channel coupling

The agreement of our scattering length value L2
S with pre-

vious determination using coupled channel calculations
might be an indication for the validity of the single chan-
nel calculations that we performed. So does the fact that,

for each set (either F = 0 or F = 2) of measured bound
levels, the various i-nodal lines yield the same value for
the scattering length. Conversely, the i-nodal lines drawn
in Figure 6 are not monotonically decreasing, as one would
expect for a series of vibrational eigenstates calculated in
the single-channel picture. Additionally, we have checked
that the small hump characterizing the difference between
the asymptotic parts of the two adiabatic potentials (see
Fig. 8 (c)) cannot be responsible for any appreciable phase
shift. The difference between the two measured scattering
length values has thus to be attributed to channel cou-
pling. As, in the asymptotic region (see Fig. 8), all poten-
tials are very close to each other, even small non-diagonal
matrix elements of the radial coupling might lead to sig-
nificant non-adiabatic effects.

To discuss these points more precisely, we consider the
quantum-mechanical treatment of channel coupling in the
asymptotic region. The coupled equations are written in
a fixed frame and only radial coupling appears. We write
the coupled solution as

Φβ(R; ri) =
∑
α=1,N

Gβ,a(R)Ψα(R; ri) , (15)

where the Gβ,a(R) are the radial components on the N
coupled channels and the Ψα(R; ri) are the electronic wave
functions associated to the adiabatic curves Vα(R). The
radial wave functions are solutions of the system of N
coupled equations:(
−
~

2

2µ

d2

dR2
+ Vα(R)−Eβ

)
Gβ,α(R) =

∑
α′ 6=α

(
~

2

2µ

〈
Ψα

∣∣∣ ∂2

∂R2
Ψα′

〉
+
~

2

µ

〈
Ψα

∣∣∣ ∂
∂R

Ψα′

〉
∂

∂R

)
Gβ,α′(R),

(16)

where the notation 〈 | 〉 indicates the integration over the
electronic variables. In the case we are interested in (see
Fig. 8 (b)), one has three coupled equations for the (sym-
metrical) states with F = 2 (and any M value): (F1 = 2,
F2 = 2), (F1 = 1, F2 = 2) and (F1 = 1, F2 = 1); one has
two coupled equations for the (symmetrical) states with
F = 0 and M = 0: (F1 = 2, F2 = 2) and (F1 = 1, F2 = 1).
The values of the coupling terms in the asymptotic region
are easily obtained from the eigenvectors characterizing
the adiabatic curves. All of them are equal to zero every-
where except in a small range (from about 15 a0 to about
27 a0 in our case). However, most of the nodes that we
consider (except for the last i-nodal line) are within the
region where the coupling is not negligible.

A complete solution of the coupled equations for the
last bound states is impossible in the asymptotic model
without additional experimental information. For N = 1,
the case of Section 4, we have an eigenvalue problem with
two boundary conditions, one being located at the inner
potential wall and being therefore unusable: we replace
it by using the experimental energy as eigenvalue. For
N = 3, one has an eigenvalue problem with six boundary
conditions, three being unusable. Thus one would need
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the eigenvalues corresponding to the 3 different F = 2
states forming the coupling space. It is, however, possible
to compute some solutions of the coupled equations at the
experimental energies. We have in particular computed by
inward integration the coupled solution whose probability
on the F1 = F2 = 1 channel is equal to one at infinite in-
teratomic distance, for the energy values Ev with v = 61
to 65 and at E = 0. For the two coupled systems that
we consider, the positions of the nodes that we obtain
in this way do not differ from the ones obtained in the
adiabatic picture by more than 1%. Taking into account
the influence of channel coupling in the asymptotic region
does not thus appreciably change the determination of the
scattering length. Two effects combine to yield this result.
Firstly, the channel coupling is weak in the asymptotic re-
gion. The last i-nodal line (i = 65) lies completely outside
of the region of radial coupling and this is almost true for
i = 64. Starting from these node positions, the determina-
tion of the E = 0 scattering wave function requires only
the pure adiabatic potentials or, almost equivalently, the
simple R−6 potential (this explains the small difference
between the results that we obtained in the two models).
Secondly, and this is probably the main strength of the
model, the influence of channel coupling in the inner re-
gion is accounted for in the experimental energy values.

6 Conclusion

We have reported accurate spectroscopic measurements
of vibrational levels at the asymptote F1 = F2 = 1 of the
ground state of Na2. The high resolution of the experiment
(about 20 MHz) allowed us, for the highest v values (64
and 65), to resolve the hyperfine structure and to measure
the difference between levels with two different values of
the total angular momentum F , which correspond to two
different dissociation channels. We have also shown that
such spectroscopic measurements yield very accurate de-
termination of the two corresponding scattering lengths.

The determination has been done here in a very simple
and rather general way. We use only the asymptotic part
of the potential curves and we perform straightforward nu-
merical integrations, in contrast with other methods which
deal with the whole potential and solve coupled equations.
In its simplest form, which is already quite efficient, our
model applies to the ground states, either X1Σ+

g or a3Σ+
u ,

of any alkali dimer. The key point of the method is to char-
acterize the phase of a wave function (of a continuum state
as well as of a bound state) by the positions of its nodes,
which are easy to compute and which allow simple graphic
representations. In the considered case (X1Σ+

g states), the
results depend very little on the chosen asymptotic poten-
tial and the accuracy is directly related to the precision of
binding energy measurements.

The value L2
S = 55.1±1.6 a0 found for the dissociation

channel F1 = F2 = 1, F = 2, which is usually known as
a1,−1 when determined from scattering data, is in good
agreement with elaborate calculations fitted on photoas-
sociation spectra [12]. For the other dissociation channel
for which experimental results were available, F1 = F2 =

1, F = 0, we found a value of L0
S = 50.0± 1.6 a0, which

differs from L2
S by about 10%. It is the first time, to our

knowledge, that scattering lengths of two different disso-
ciation channels which are both correlated to the singlet
ground state can be compared directly, through indepen-
dent measurements. The difference is important, although
the two adiabatic curves are very close to each other (see
Fig. 8). The origin of this difference cannot be found in
the slight hump of F = 2 compared to F = 0 (see Fig. 8)
and should thus be found in channel coupling. In any case,
in view of this result, it appears that it would be very in-
teresting to have experimental data corresponding to all
other dissociation channels.

In order to further test our method, we did a deter-
mination of the scattering lengths of the triplet ground
state of 6Li and 7Li, for which previous determinations
existed. For 7Li, we have used the measured energy val-
ues of the last vibrational level (v = 10) [41], and of the
v = 7 one [42]; we find then a value of −27.9 ± 0.4 a0;
the value that the same authors obtained by adjusting
the whole potential to all available experimental energies
is −27.3± 0.8 a0 (later revised as −27.6± 0.5 a0 in [14]).
In the case of 6Li, Abraham et al. in reference [14] found
a scattering length of −2160 ± 250 a0 by using in par-
ticular a direct measurement of the binding energy of the
highest-lying bound state. Using this energy (which corre-
sponds to v = 9), together with the binding energy of the
level v = 7 [42], we too find a large negative value of the
scattering length (with an absolute value of a few thou-
sands). The uncertainty is, however, very large, not only
because of the lack of a measured value of the v = 8 level,
but especially because, for large scattering length values,
small variations in the node positions give huge variations
of the scattering length (see Fig. 3).

It is worth mentioning that, once the scattering length
is known, it is possible to use reciprocally our model to
predict, at least roughly, the position of the last bound
levels. We did it for the triplet ground state of Na2, us-
ing the determination of reference [12], a2,−2 = 85± 3 a0.
The corresponding predicted level energies with respect
to the F1 = 2 + F2 = 2 asymptote (0.1182 cm−1 above
F1 = 1 + F2 = 1) are, for ` = 0, F = 4 and for the last
three v values: Ev = −0.003 cm−1, Ev−1 = −0.15 cm−1

and Ev−2 = −0.85 cm−1. There is no coupling to other
potentials because F = 4 is a single channel. From new
observations of the triplet state [27] with the method de-
scribed in Section 2, the assignment of these predicted lev-
els to absolute vibrational quantum numbers is straight-
forward; v = 15 is the last vibrational level of this triplet
potential.

In conclusion, we have proposed a very simple and in-
tuitive method to connect the energies of the last bound
levels to the scattering length. We derive the scattering
length from the asymptotic part of the E = 0, ` = 0
threshold wave function, which is extremely close to the
wave function of the last bound level. As we calculate the
latter by using its experimental energy position, we ac-
count for channel coupling in some effective way: this is
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probably the reason why the method can compete favor-
ably with elaborate close-coupling calculations.

The work at Hannover was supported by the Deutsche Forsch-
ungsgemeinschaft within the SFB 407.

References

1. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wie-
mann, E.A. Cornell, Science 269, 198 (1995).

2. K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van
Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev.
Lett. 75, 3969 (1995).

3. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys.
Rev. Lett. 75, 1687 (1995).

4. L. Landau, L. Lifchitz, Physique Statistique, chapt. VII,
par. 78 (Mir, Moscow 1967).

5. E.P. Gross, Nuovo Cimento 20, 454 (1961).
6. L.P. Pitaevski, Sov. Phys. JETP 13, 451 (1961).
7. G.F. Gribakin, V.V. Flambaum, Phys. Rev. A 48, 546

(1993).
8. M.J. Jamieson, A. Dalgarno, J. Phys. B 31, L219 (1998).
9. J.R. Gardner, R.A. Cline, J.D. Miller, D.J. Heinzen,

H.M.J.M. Boesten, B.J. Verhaar, Phys. Rev. Lett. 74, 3764
(1995).

10. H.M.J.M. Boesten, C.C. Tsai, B.J. Verhaar, D.J. Heinzen,
Phys. Rev. Lett. 77, 5194 (1996).

11. E.R.I. Abraham, W.I. McAlexander, J.M. Gerton, R.G.
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Hulet, R. Côté, A. Dalgarno, Phys. Rev. A 55, R3299
(1997).

15. C. C. Tsai, R. S. Freeland, J. M. Vogels , H. J. M. Boesten,
B. J. Verhaar, D. J. Heinzen, Phys. Rev. Lett. 79, 1245
(1997).

16. A.J. Moerdijk, B.J. Verhaar, Phys. Rev. Lett. 94, 518
(1994).
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